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Abstract

In this paper we develop an analytical and graphical formulation of the constructal law of maximization of flow

access in systems with heat and fluid flow irreversibilities and freedom to change configuration. The flow system has

global performance (e.g., minimization of global flow resistance) and global properties, or constraints (e.g., overall size,

and total duct volume). The infinity of possible flow structures occupies a region of the two-dimensional domain of

‘‘global performance versus freedom to morph’’. This region of ‘‘nonequilibrium flow structures’’ is bounded by a line

representing the best flow structures that are possible when the freedom to morph is limited. The best of all such

structures are the ‘‘equilibrium flow structures’’: here the performance level is the highest, and it does not change even

though the flow architecture can change with maximum freedom. The universality of this graphical and analytical

presentation is illustrated with examples of flow structures from three classes: flow between two points, flow between a

circle and its center, and flow between one point and an area. In sum, this paper presents an analytical and graphical

formulation of the constructal principle of generation of flow architecture. The place of this new and self-standing

principle in the greater framework of thermodynamics is outlined.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Flow systems are imperfect thermodynamically be-

cause of the resistances that their flows must overcome.

Depending on system purpose and complexity, the cur-

rents may carry fluids, heat, electricity and chemical

species. The resistances are an integral and unavoidable

presence because of the finite-size constraints that define

the flow system. For example, the resistance to the flow

of heat between two streams in a balanced counterflow

heat exchanger can be made vanishingly small if the heat
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transfer surface can be made infinitely large. In reality,

the surface size is fixed, and this means that the heat

current is destined to encounter a thermal resistance.

The current flows irreversibly, and this feature has a

negative effect on global thermodynamic performance.

The flow system is destined to be imperfect.

When the flow system is complex, the currents and

resistances are many and diverse. The route to higher

global performance consists of balancing each resis-

tance against the rest. The distributing and re-distrib-

uting of imperfection through the complex flow system

is accomplished by making changes in the flow archi-

tecture. A prerequisite then is for the flow system to be

free to change its configuration––free to morph. The

morphing of structure is the result of the collision be-

tween the global objective and the global constraints.
ed.
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Nomenclature

A area, m2

Ap projected area of high-conductivity inserts,

m2

C constant, Eq. (2)

d spacing between outlets on the circle, Fig. 3

Dh hydraulic diameter, m

D0, D1, D2 duct diameters, m

f friction factor, Eq. (2)

f̂ global flow resistance, Eq. (3)

F Helmholtz free energy, J

k pairing level

k0 low thermal conductivity, Wm�1 K�1

kp high thermal conductivity, Wm�1 K�1

L system size, m

L0, L1, L2 duct lengths, m

_m mass flow rate, kg s�1

n number of sides in regular polygon

n0 number of tubes that reach the center of the

disc, Fig. 3

N number of outlets on the circle, Fig. 3

p perimeter of duct cross-section, m

q000 volumetric heat generation rate, Wm�3

R global flow resistance, e.g., DP= _m
Rt global thermal resistance, KW�1

Re Reynolds number

S entropy, JK�1

Tmax hot-spot temperature, K

Tmin heat sink temperature, K

U internal energy, J

U mean velocity, m s�1

V volume of all the ducts, m3

Vol volume of thermodynamic system, m3

YL, YV first derivatives, Eq. (13)

Greek symbols

DP pressure drop, Pa

m kinematic viscosity, m2 s�1

q density, kgm�3
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The generation of flow architecture is the means by

which the flow system achieves its global objective under

the constraints.

In recent years, this activity of thermodynamic opti-

mization through the selection of flow configuration has

become more focused on the end result, which is the

generation of the architecture of the flow system. This is

particularly evident in modern computational heat and

fluid flow, where large numbers of flow configurations

can be simulated, compared and optimized. The gener-

ation of flow architecture is a phenomenon at work

everywhere, not only in engineered flow systems but also

in natural flow systems (animate and inanimate). The

universality of this observation was expressed in a

compact statement (the constructal law [1,2]) that pro-

claims a natural tendency in time: the maximization of

access for the currents that flow through a morphing

flow system. The thought that this principle can be used

to rationalize the occurrence of optimized flow struc-

tures in nature (e.g., tree networks, round tubes) was

named constructal theory [1–4].

This paper is a formulation of the constructal prin-

ciple in analytical and graphical terms that are analo-

gous to terms employed in thermodynamics [2]. This

formulation makes the universality of the constructal

law more evident.
2. Flow between two points

A flow system, or nonequilibrium thermodynamic

system, is characterized by ‘‘properties’’ (constraints),
such as total volume, total volume occupied by all the

ducts, etc. A flow system is also characterized by ‘‘per-

formance’’ (function, objective) and ‘‘flow structure’’

(configuration, layout, geometry, architecture). Unlike

the black box of classical thermodynamics, which rep-

resents a system at equilibrium, a flow system has

performance and especially configuration. Each flow

system has a drawing. By means of examples, we show

that each flow system has a fundamental relation be-

tween performance, properties and flow structure

(drawing).

We start with one of the simplest examples of how

the collision between global objective and global con-

straints generates the complete architecture of the flow

system. Consider the flow between two points (Fig. 1),

where ‘simple’ are only the optimal and near-optimal

architectures. This makes the example easy to present

graphically. The rest of the design process is conceptu-

ally as vast and complicated as in any other example.

When the flow architecture is free to morph, the design

space is infinite. There is an infinity of flow architectures

that can be chosen to guide a fluid stream ( _m) from one

point to another point.

Constructal theory [1,2] begins with the global

objective(s) and the global constraint(s) of the flow

system, and the fact that in the beginning the geometry

of the flow is missing. Geometry is the unknown. In Fig.

1 the objective is to force the single-phase fluid stream _m
to flow from one point to another, while using minimal

pumping power. When _m is fixed, this objective is the

same as seeking flow architectures with minimal pressure

overall difference (DP ), minimal overall flow resistance



Fig. 1. General, undefined flow architecture for guiding a stream from one point to another point.
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(R), or minimal rate of entropy generation by fluid

friction.

There are two global constraints, one external and

the other internal. The external constraint is the ‘‘system

size’’, which is represented by the distance between the

two points, L. The internal global constraint is the

‘‘amount’’ invested in making the flow architecture. In

Fig. 1 that amount is the total volume (V ) of all the

ducts of the flow structure. Without such an investment

there is no flow––not even a drawing that would show

the flow. A flow must be guided. Flow means direction,

geometry and architecture, in addition to flow rate.

Why is there an infinity of eligible flow architectures

that meet the global objective and global constraints

recognized above? There are many reasons, i.e., many

thoughts in the direction of which the number of pos-

sible architectures increases without bounds:

ii(i) the flow pattern may be two-dimensional (in the

plane of Fig. 1), or three-dimensional,

i(ii) any number of ducts may be connected in parallel

between the two points,

(iii) a duct may have any number of branches or tribu-

taries at any location between the two points,

(iv) a single duct may have any length,

i(v) the cross-sectional shape may vary along the duct,

(vi) a duct may have any cross-sectional shape.

We will see that the best configuration (the straight

round tube) is far from being alone on the podium of

maximal performance. This podium and the configura-

tion world under it are the new physics domain charted

by this paper, and made a part of thermodynamics.

How do we identify the geometric features that bring

a flow architecture to the highest level of global per-

formance? There are many lessons of this type

throughout engineering, and, if remembered, they con-

stitute strategy––they shorten dramatically the search

for the geometry in which all the features are ‘‘useful’’ in

serving the global objective. Constructal theory is about

strategy, about compact lessons of optimal shape and
structure, which are fundamental and universally appli-

cable. They are geometric relatives of truths such as the

universal observation that all things flow naturally from

high to low (the second law of thermodynamics).

Here are the classical lessons that abbreviate the

search through the broad categories listed as (i)–(vi).

Again, for simplicity assume that ducts are slender, and

the flows are slow so that in each cross-section the re-

gime is laminar and fully developed. Each lesson is

identified by the symbol of the geometric feature that it

addresses:

(i)–(iii) A single duct with large cross-section offers a

smaller flow resistance than two ducts with

smaller cross-sections connected in parallel.

(iv) The lowest resistance belongs to the shortest

duct, in this case the straight duct between the

two points.

(v) The duct with cross-sectional geometry that does

not vary longitudinally has a lower resistance

than the duct with variable cross-section. In heat

conduction, for example, this principle is in-

voked to deduce the optimal fin shape [5]. If

the cross-section is the throttle that represents

the imperfection (resistance) of the flow path,

then, in line with constructal theory, the duct

with constant cross-section is the duct with

‘‘optimal distribution of imperfection’’ [1].

Summing up, out of the infinity of designs repre-

sented by (i)–(v) we have selected a single straight duct

with a cross-sectional shape that does not vary from one

end of the duct to the other. According to (vi), however,

there is still an infinite number of possible cross-section

shapes: symmetric versus asymmetric, smooth versus

polygonal, etc. Which impedes the flow the least?

The answer becomes visible if we assume cross-sec-

tions with polygonal shapes. Start with an arbitrary

cross-section shaped as a triangle. The area of the cross-

section A is fixed because the total duct volume V and

the duct length L are fixed, namely A ¼ V =L. Triangular
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cross-sections constrict the flow when one of the angles

is much smaller than the other two.

The least resistance is offered by the most ‘‘open’’

triangular cross-section, which is shaped as an equilat-

eral triangle. Once again, if one very small angle and two

larger ones represent a nonuniform distribution of geo-

metric features of imperfection (i.e., features that impede

the flow), then the equilateral triangle represents the

architecture with ‘‘optimal distribution of imperfec-

tion’’.

The same holds for any other polygonal shape. The

least resistance is offered by a cross-section shaped as a

regular polygon. In conclusion, out of the infinity of

flow architectures recognized in class (vi) we have se-

lected an infinite number of candidates. They are or-

dered according to the number of sides (n) of the regular
polygon, from the equilateral triangle (n ¼ 3) to the

circle (n ¼ 1). The flow resistance for Hagen–Poiseuille
Fig. 2. The approach to the minimal global flow resistance between tw

section (n) increases (data from Table 1).

Table 1

The laminar flow resistances of straight ducts with regular-

polygonal cross-sections with n sides

n C p=A1=2 Cp2=A

3 40/3 4.559 277.1

4 14.23 4 227.6

5 14.74 3.812 214.1

6 15.054 3.722 208.6

8 15.412 3.641 204.3

10 15.60 3.605 202.7

1 16 2p1=2 201.1
flow through a straight duct with polygonal cross-sec-

tion can be written as (Ref. [1, pp. 127–128])

DP
_m

¼ mL
8V 2

Cp2

A
ð1Þ

where p is the perimeter of the cross-section. As shown

in Table 1, the dimensionless perimeter p=A1=2 is only a

function of n. The same is true about C, which appears

in the solution for friction factor in Hagen–Poiseuille

flow,

f ¼ C
Re

ð2Þ

where Re ¼ UDh=m, Dh ¼ 4A=p and U ¼ _m=ðqAÞ.
In conclusion, the group Cp2=A depends only on n,

and accounts for how this last geometric degree of

freedom influences global performance. The group

Cp2=A is the dimensionless global flow resistance of the

flow system. The smallest Cp2=A value is the best, and

the best is the round cross-section.
3. Equilibrium flow structures

Fig. 2 is a plot of the flow resistance data of Table 1.

The flow structure with minimal global resistance is

approached gradually (with diminishing decrements) as

n increases. The polygonal cross-section with n ¼ 10

performs nearly as well as the round cross-section

(n ¼ 1). The ‘evolution’ of the cross-sectional shape

stops when the number of features (n) has become infi-

nite, i.e., when the structure has become the most free.
o points when the number of sides of the regular-polygon cross-
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This configuration where changes in global performance

have stopped is the equilibrium flow architecture.

The curve plotted in Fig. 2 was generated by calcu-

lations for regular-polygon cross-sections. The curve is

in reality a sequence of discrete points, one point for

each n value. We drew a continuous line through these

points in order to stress an additional idea. Regardless

of n, the regular polygon and straight duct with con-

stant cross-section is already the ‘winner’ from an infi-

nitely larger group of competing architectures. See

features (i)–(vi) and Fig. 1. Qualitatively, this means that

the global flow resistances of all the designs that are not

covered by Table 1 fall to the right of the curve plotted

in Fig. 2.

In sum, the immensely large world of possible designs

occupies only a portion of the two-dimensional domain

illustrated in Fig. 2. This domain can be described

qualitatively as ‘‘performance versus freedom’’, when

global properties such as L and V are specified. The

boundary of the domain is formed by a collection of the

better flow structures. The best is achieved by putting

more freedom in the geometry of the flow structure (e.g.,

a larger n). The best performance belongs to the structure

that was most free to morph––the equilibrium configu-

ration. In its immediate vicinity, however, we find many

configurations that are different (they have finite n val-

ues), but have practically the same global performance

level. These are near-equilibrium flow structures.
Fig. 3. The optimized tree structure with two levels of pairing

and n0 ¼ 3 (or N ¼ 12) [6].
4. Flow between one point and a large number of points

The evolution of flow configuration illustrated in

Figs. 1 and 2 for point-to-point flows is a universal

phenomenon, which manifests itself during any search

for optimal flow architectures. Some of the more com-

plex architectures that have been optimized recently are

the flow structures that connect one point (source, or

sink) with an infinity of points (line, area, or volume).

According to constructal theory, the best flow path that

makes such a connection is shaped as a tree [1–4]. The

tree is for point–area flows what the straight duct is for

point–point flows.

The search for the flow path with minimal global

resistance between one point and an area begins with

recognizing the many ways in which the freedom of the

flow geometry can be increased. This initial phase is

equivalent to recognizing features (i)–(vi) of Section 2.

An effective strategy for abbreviating this search is pro-

vided by the constructal principle, which recommends a

certain (optimized) tree-shaped flow architecture. The

constructal tree may be finessed (improved) by endowing

its geometry with progressively more freedom to morph.

The simplest way to illustrate this behavior is to

consider the flow connection between one point and a
large but finite number of points. One example is the

flow that bathes with minimal global resistance a disc-

shaped area [6]. The stream ( _m) emerges through the

center of the disc, and exits through a large number of

outlets positioned equidistantly along the disc perimeter

(Fig. 3). The objective is to minimize the global flow

resistance DP= _m, where DP is the pressure difference

between the center and the rim. The global constraints

are the system size (the disc radius L) and the total

volume occupied by the ducts (V ). Note that the disc

radius L plays the same role as L in Section 2: L is the

external global constraint of the system.

Even if the search for optimal configuration starts

with an assumed tree-shaped flow structure, there are

still several geometric features that can be adjusted. We

use the conclusions of Sections 2 and 3, and assume that

every tube is straight with round cross-section and fully

developed laminar flow. We also assume that local

pressure drops due to junctions are negligible. The flow

geometry is described by the lengths and diameters of all

the ducts, the number of radial ducts (n0) that touch the

center of the disc, the distance between outlets (d, or
the number of outlets on the rim, N ¼ 2pL=d), and the

number of pairing (or bifurcation) levels, which in Fig. 3

are indicated with dashed circles. In general, the number

of tributaries that form a larger stream is free to vary. It

was shown that the number two (dichotomy, pairing,

bifurcation), which was chosen in Fig. 3, is the best such

number [6,7]. Although the tree structure chosen in Fig.

3 has multiple scales and is free to change, it is already

better than a huge number of other possible flow

structures. In this respect, a general dichotomous tree
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structure is a near-equilibrium configuration––the

equivalent of the straight duct with constant cross-sec-

tion shaped as a regular polygon.

What changes in the point-to-circle tree geometry?

Because L is fixed, the architecture has five degrees of

freedom: the number of central tubes n0, the length ra-

tios L0=L and L1=L, and the tube diameter ratios D1=D0

and D2=D1. Another classical lesson of flow-system

optimization is Murray’s rule [1,8], according to which

the optimal diameter ratios are all equal (D1=D0 ¼
D2=D1 ¼ � � � ¼ 2�1=3). Murray’s rule was adopted in [6],

where the tree geometry was optimized for many n0
values, and for various levels of pairing. For example,

the configuration selected in Fig. 3 is the optimal flow

layout for two levels of pairing and n0 ¼ 3 (or N ¼ 12).

It was shown that the minimized global flow resistance is

represented by a formula similar to Eq. (1),

DP
_m

¼ 8pm
L3

V 2
f̂ ð3Þ

The dimensionless factor f̂ is a function of the number

of pairing levels and N (or n0), and is summarized in Fig.

4. The curves represent the f̂ values minimized with

respect to all the length ratios and diameter ratios.

In conclusion, the multitude of designs that depart

from the optimal configuration (e.g., Fig. 3) have larger

f̂ values, and occupy the space above the respective

f̂ ðNÞ curve. This feature is similar to what we saw in Fig.

2 for point–point flow structures. In fact, we arrive at

the equivalent of Fig. 2 if we focus on only one class of

flow structures: the structures with the same number of

outlets on the rim, for example, N ¼ 48. These struc-

tures have the same global properties (L; V ). Their
Fig. 4. The minimized global flow resistance of the tree-shaped flow str
number of central tubes (n0) decreases as the number of

pairing levels (k) increases, namely n0 ¼ 48=2k . This is

the same as reading Fig. 4 in the vertical cut made at

N ¼ 48. The results are shown in Fig. 5. The perfor-

mance improves as k increases. The equilibrium flow

structure is the one with four levels of pairing, k ¼ 4.

This configuration is the most free to morph, and sat-

isfies the additional constraint (N ¼ 48). Its complexity

(k ¼ 4) is a result of optimization. Optimized complexity

should not be confused with maximized complexity.

The continuous curve that unites the five points in

Fig. 5 has the same symbolic meaning as in Fig. 2. Such

a curve cannot be plotted. What exists is a conceptual

demarcation line in the ‘‘performance versus freedom’’

domain. To the right of this line falls the ‘cloud’ of all

the nonequilibrium flow structures that are possible. For

example, the square plotted at n0 ¼ 3 and f̂ ¼ 17:6
indicates the sub-optimal flow structure obtained more

expediently by minimizing ‘locally’ the flow path lengths

and assembling them as building blocks in a hierarchical

sequence [9], instead of minimizing globally the flow

resistance [6]. The edge of the cloud is concave, and the

tangent to it approaches verticality near the point of

equilibrium. This is another way of saying that a near-

equilibrium flow structure such as the point labeled

k ¼ 3 performs at practically the same level as the

equilibrium flow structure (k ¼ 4).

The construction of Fig. 5 can be repeated for larger

N values, and every new figure will be qualitatively the

same as Figs. 5 and 2. The only change relative to Fig. 5

will be the increasingly larger k values of the designs that
mark the edge of the cloud. The number k plays the

same role as n in Fig. 2. The equilibrium flow structure
uctures that connect the center and the rim of a circular area [6].



Fig. 5. The approach to the minimal global flow resistance between the center and the rim of a circular area when N ¼ 48 in Fig. 4.

A. Bejan, S. Lorente / International Journal of Heat and Mass Transfer 47 (2004) 3203–3214 3209
will be at the bottom end of the curve. It will represent

the optimized architecture that results when the con-

stant-N class is endowed with most freedom as it mor-

phs.
5. Flow between one point and an infinite number of points

In the limit N ! 1, Fig. 5 will have an infinite

number of points on the edge of the cloud, and in the

vicinity of the equilibrium structure the edge curve will

appear continuous. The equilibrium structure will be a

fractal tree, because only in this hypothetical limit it will
Fig. 6. Optimized high-conductivity trees embedded in low-conductiv

kp=k0 ¼ 300) [14].
have an infinite number of pairing levels [2,10]. This tree

will connect the center of the disc with every point of the

disc perimeter.

Many examples of optimized tree-shaped flow struc-

tures have been published based on constructal theory

(e.g., Refs. [1,4,11–14]). They all exhibit the organization

illustrated here in Figs. 2 and 5. Consider just one

example of flow between an entire area and one point:

conduction in a rectangular domain of area A and

conductivity k0, with uniform heat generation rate per

unit area q000 (Fig. 6). The A domain is rectangular, and

its boundaries are insulated except the mid point of one

of the sides, which serves as heat sink (Tmin). The hot
ity media with uniform volumetric heat generation (Ap=A ¼ 0:1,
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spot (Tmax) occurs in one of the opposing corners of the

rectangle. The flow of the global heat current q000A is

aided by ‘ducts’ of high-conductivity material (kp),
which are distributed over A. The total area occupied by

the kp inserts is Ap.

There is an analogy between the area–point heat flow

and the fluid flow structures discussed until now. The

length scale A1=2 plays the same role as the system size L.
The area occupied by all the ducts (Ap) when they are

projected on A plays the same role as the total duct

volume V . The objective is the minimization of the

global thermal resistance

Rt ¼
Tmax � Tmin

q000A=k0
ð4Þ

Tree structures formed by kp-inserts were optimized

numerically in Ref. [14]. One sequence of results for

‘second constructs’ is shown in Fig. 6. The global

resistances of the three designs reported in this sequence

are Rt ¼ 0:0379, 0.0354 and 0.0374: the best second

construct is in the middle, and has four first constructs.

Each structure could still be finessed, with more degrees

of freedom, en route to the equilibrium structure, which

has the smallest possible global flow resistance. The

nonequilibrium structures occupy a cloud of the kind

shaded in Figs. 2 and 5, while the three configurations

mentioned above reside near the edge of the cloud.
Fig. 7. The space occupied by all the flow structures when the

global external size (L) is fixed.
6. The constructal law

The flow systems discussed in Sections 2–5 have

configurations that inhabit the hyperspace suggested in

Fig. 7a. All the constant-L flow configurations that are

possible inhabit the volume visualized by the constant-V
and constant-R cuts. The bottom figure shows the view

of all the possible flow structures, projected on the base

plane. Plotted on the R axis is the global resistance of the

flow system, namely R ¼ DP= _m and Rt in the preceding

examples. The abscissa accounts for the total volume

occupied by the ducts (V ): this is a global measure of

how ‘porous’ or ‘permeable’ the flow system is. The

constant-V plane that cuts through Fig. 7a is the same as

the plane of Figs. 2 and 5.

The constructal law is the statement that summarizes

the common observation that flow structures that sur-

vive are those that morph in one direction in time: to-

ward configurations that make it easier for currents to

flow. This holds for natural and engineered flow struc-

tures. The first such statement was [1,2]:

For a finite-size system to persist in time (to live), it

must evolve in such a way that it provides easier ac-

cess to the imposed currents that flow through it.
If the flow structures are free to change (free to ap-

proach the base plane in Fig. 7a), they will move at con-

stant-L and constant-V in the direction of progressively

smaller R. If the initial configuration is represented by

point 1 in Fig. 7b, then a more recent configuration is rep-

resented by point 2. The relation between the two con-

figurations is R2 6R1 (constant L, V ). If freedom tomorph

persists, then the flow structure will continue toward

smaller R values. Any such change is characterized by

dR6 0 ðconstant L; V Þ ð5Þ

The end of this migration is the equilibrium flow struc-

ture (point e), where the geometry of the flow enjoys

total freedom. Equilibrium is characterized by minimal

R at constant L and V . In the vicinity of the equilibrium

point we have



Fig. 8. The space occupied by all the flow structures when the

global internal size (total duct volume V ) is fixed.
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dR ¼ 0 and d2R > 0 ðconstant L; V Þ ð6Þ

The RðV Þ curve shown in Fig. 7b is the edge of the cloud

of possible flow architectures with the same global size

L. The curve has negative slope because of the physics of
flow: the flow resistance always decreases when the flow

channels open up:

oR
oV

� �
L

< 0 ð7Þ

The constant-R cut through the configuration space

shows another way of expressing the constructal law. If

free to morph, the flow system will evolve from point 1

to point 20 at constant L and R. In the limit of total

freedom, the geometry will reach another equilibrium

configuration, which is represented by point e0. The

alternative analytical statement of the constructal law is

dV 6 0 ðconstant L;RÞ ð8Þ

For changes in structure in the immediate vicinity of the

equilibrium structure, we note

dV ¼ 0 and d2V > 0 ðconstant L;RÞ ð9Þ

Paraphrasing the original statement of the constructal

law, we may describe processes of type 1–20–e0 as follows:

For a system with fixed global size and global per-

formance to persist in time (to live), it must evolve

in such a way that its flow structure occupies a

smaller fraction of the available space.

The constant-V alternative to Fig. 7 is shown in Fig.

8. The lower drawing is the projection of the space of

possible flow architectures on the base plane R–L. The
continuous line is the locus of equilibrium flow struc-

tures at constant-V , namely the curve RðV Þ where

oR
oL

� �
V

> 0 ð10Þ

The fact that the slope is positive is flow physics: the flow

resistance always increases as the distance that must be

overcome by the flow increases.

The constructal law statement can be read off Fig. 8b

in two ways. One is the original statement [1,2]: at

constant V and L, the evolution is from a sub-optimal

structure (point 1) to one that has a lower global resis-

tance (point 2). If the flow geometry continues to morph

freely, the structure approaches the equilibrium config-

uration (point e). In the vicinity of point e, the changes

in flow structures are characterized by Eqs. (6).

The alternative is when structural changes are made

such that R remains constant while V is also fixed. Then
the evolution in Fig. 8b is from point 1 to point 2
00
. Such

changes mean that

dLP 0 ðconstant R; V Þ ð11Þ

and that the constructal law statement becomes:

In order for a flow system with fixed global resis-

tance (R) and internal size (V ) to persist in time,

the architecture must evolve in such a way that it

covers a progressively larger territory.

Equilibrium is reached at point e00. The changes in

flow structures in the immediate vicinity of the equilib-

rium structure are such that the global external dimen-

sion at equilibrium is maximal,

dL ¼ 0; d2L < 0 ðconstant R; V Þ ð12Þ
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According to Eqs. (12), the constructal law states that

the ultimate flow structure with specified global resis-

tance (R) and internal size (V ) is the largest. A flow

architecture with specified R and V has a maximum size,

and this global size belongs to the equilibrium archi-

tecture. A flow structure larger than this does not exist.

This formulation of the constructal law has implications

in natural design, e.g., the spreading of species and river

deltas without access to the sea.
7. Survival by increasing efficiency, territory and com-

pactness

It is worth examining the ground covered so far. The

original statement of the constructal law was about the

maximization of flow access under global size con-

straints (external L, internal V ). This behavior is illus-

trated by the structural changes 1–2–e in Figs. 7b and

8b, and by Eqs. (5) and (6). This means survival by

increasing efficiency––survival of the fittest. This is the

physics principle behind Darwin’s observations, the

principle that rules not only the animate natural flow

systems, but also the inanimate natural flow systems and

the engineered flow systems. The engineered systems are

diverse species of ‘man+machine’ beings.

The alternative shown by the changes 1–200–e00 in Fig.

8b is survival by spreading: growth as the mechanism for

being able to persist in time. The limit to growth is set by

the specified constraints, in this case the fixed global flow

resistance R and the global internal size V . A given living

species (river delta, animal population) will spread over

a certain, maximal territory.

An equivalent interpretation of the constructal prin-

ciple is based on processes of type 1–20–e0, Fig. 7b. Flow
architectures with the same performance (R) and size (L)
evolve toward compactness––smaller volumes dedicated

to the internal ducts, i.e., larger volumes dedicated to the

working volume elements, which are the interstices. This

is survival based on the maximization of the use of the

available space.
8. The constructal law as an addition to thermodynamics

Changes in performance (R) can be achieved through

changes of three types:

I. Flow configuration.

II. Global external size, or covered territory, L.
III. Global internal size, or duct volume, V .

The examples discussed so far showed that changes

may occur in one category, or simultaneously in two or

three. The simplest illustration is possible for the case of
equilibrium flow architectures. For them the solid

curves shown in Figs. 7b and 8b proclaim the existence

of the fundamental relation RðL; V Þ, the differential of

which is

dR ¼ YL dLþ YV dV ðequilibriumÞ ð13Þ

Physics requires that the first partial derivatives of R
have opposite signs, YL > 0 and YV < 0, as noted in Eqs.

(10) and (7). Analytical expressions for these derivatives

are available in simple cases, e.g., Eqs. (1) and (3). For

example, Eq. (1) states that R 
 L=V 2, and from this

expression one can obtain YL ¼ ðoR=oLÞV and YV ¼
ðoR=oV ÞL. Another example is the global flow resistance

of a T-shaped construct of round tubes with fully

developed laminar flow [7], where R 
 A3=2=V 2, and A
(or 
 L2 in this paper) is the area occupied by the con-

struct. If the flow regime is turbulent, R is proportional

to A7=4=V 5=2 [7]. The global resistance of an equilibrium

flow structure can be decreased (dR < 0) through

changes II and III, i.e., by making the structure occupy a

smaller territory (dL < 0), and/or by endowing the

structure with a larger internal flow volume (dV > 0).

In general, when the flow architecture has not

reached equilibrium, R can be decreased by means I, II

and III. Then the general version of Eq. (13) is

dR6 YL dLþ YV dV ð14Þ

where the inequality sign refers to the time arrow of

structural changes in a flow configuration that, at least

initially, was not of the equilibrium type. It is instruc-

tive to review Eqs. (5), (8) and (11), to see that Eq. (14)

is a concise statement of the three analytical for-

mulations of the constructal law that we discussed so far:

R minimum at constant L and V ,
V minimum at constant R and L,
L maximum at constant V and R.

Another way to summarize the analytical formula-

tion that we have just constructed is by recognizing the

analogy between the analytical constructal law and the

analytical formulation of classical thermodynamics [2].

The analogy is presented in Table 2. It is stressed further

by Figs. 9 and 10, which are from present-day thermo-

dynamics (see Ref. [2, pp. 241 and 244]). Fig. 9 expresses

the energy minimum principle, which states that as the

internal constraints of a closed system are removed at

constant volume and entropy, the energy approaches a

minimal value. Fig. 9 is analogous to Fig. 8a.

Fig. 10 is a restatement of the energy minimum

principle in Helmholtz free-energy (F ) representation: as
the constraints of the closed system are removed at

constant volume and temperature, F decreases towards

a minimal value. Fig. 10 is the thermodynamics equiv-

alent of the constructal-theory Fig. 7a.



Fig. 9. The energy minimum principle (fixed volume) [2].

Table 2

The concepts and principles of classical thermodynamics and constructal theory

Thermodynamics Constructal theory

State Flow architecture (geometry, configuration, structure)

Process, removal of internal constraints Morphing, change in flow configuration

Properties (U ; S;Vol; . . .) Global objective and global constraints (R; L; V ; . . .)
Equilibrium state Equilibrium flow architecture

Fundamental relation, UðS;Vol; . . .Þ Fundamental relation, RðL; V ; . . .Þ
Constrained equilibrium states Nonequilibrium flow architectures

Removal of constraints Increased freedom to morph

Energy minimum principle: Constructal principle:

U minimum at constant S and Vol R minimum at constant L and V
Vol minimum at constant F and T V minimum at constant R and L
S maximum at constant U and Vol L maximum at constant V and R

Fig. 10. The Helmholtz free-energy minimum principle (fixed

temperature) [2].
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9. Concluding remarks

The analytical formulation of the constructal law

presented in this paper expresses a universal phenome-

non: figures such as Figs. 2 and 5 characterize the evo-

lution toward equilibrium configuration in any flow

system with global objective, global constraints, and

freedom to morph. In this paper we demonstrated this

through examples from three wide classes of flow

architectures: flow between two points, flow between a

circle and its center and flow between one point and an

area.

Many other examples can be contemplated, and they

will all reveal the image of Figs. 2 and 5 on the road to

equilibrium flow architectures. For example, if in the

flow between two points the regime is turbulent (fully

developed, fully rough) in every duct, then the friction

factor is independent of Reynolds number. The rea-

soning presented in Sections 2 and 3 applies, however,

instead of the group Cp2=A of Table 1, the measure of

the flow resistance of the regular-polygon cross-section

is the dimensionless perimeter of the cross-section

(p=A1=2 in Table 1). The better cross-sectional shapes

have lower p=A1=2 values. It is easy to see that the

‘‘performance versus freedom’’ figure that can be built

using the p=A1=2 values of Table 1 will have the same

features as Fig. 2. Similarly, if in the point–circle flow

structures that gave us Fig. 5 we consider fully devel-

oped turbulent flow in every duct (instead of laminar

flow), the emerging map in the performance versus

freedom domain will be qualitatively the same as

Fig. 5.

Another class of examples is based on the more

realistic assumption that the pressure losses at junctions

of three or more tubes are not negligible. This class of

architectures can be pursued for both laminar and tur-

bulent flow. The optimal geometric aspect ratios of flow

junctions will change when the junction losses are ac-

counted for, but the qualitative outlook of the flow

architecture will not change. In the end, the world of
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possible flow architectures will fill a cloud with the same

features as in Fig. 5.

At equilibrium the flow configuration achieves the

most that its freedom to morph has to offer. Equilibrium

does not mean that the flow architecture (structure,

geometry, configuration) stops changing. On the con-

trary, it is here at equilibrium that the flow geometry

enjoys most freedom to change. Equilibrium means that

the global performance does not change when changes

occur in the flow architecture.
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